天地往返运输系统是能够自由进出空间轨道、安全返回地球表面、执行天地往返运输任务的航天运输体系。近年来,随着先进动力、新材料、新工艺的带动效应逐渐显现,各航天集团开始了新一轮先进天地往返系统的研究,其中大量研究项目针对具备完全可重复使用、可大幅降低运送有效载荷进入太空成本的先进天地往返运输系统展开。本文针对这一热点领域进行综述性研究,对不同类型进出大气层飞行器的气动设计特点进行了分析,结果表明跨大气层飞行器是天地往返运输系统的主要载体,认为未来主要以火箭助推入轨滑翔再入和水平起飞水平返回为主要发展方向,两类飞行在气动设计方面有高超飞行器宽域飞行适应性的共性难题,同时在气动-动力一体化化设计方面又有较大的差异。
尖锐鼻锥冷却方案是可复用式航天飞行器研究领域一个十分重要的课题。传统发散冷却虽然可以有效降低鼻锥结构温度,但是由于驻点外极高的热流、压力,会出现驻点冷却效果差的问题。迎风凹腔结构是一种针对鼻锥驻点区域的减阻防热方案,尖锐唇口的分流作用可以使附近压力、热流降低。因此,提出一种新型冷却结构——凹腔-发散组合冷却,利用迎风凹腔结构对驻点的强化冷却解决发散冷却中驻点难以冷却的问题。以楔形鼻锥为物理模型,对发散冷却、迎风凹腔结构和凹腔-发散冷却3种冷却结构进行数值模拟,并和无冷却的纯鼻锥结构进行对比。结果表明,与传统发散冷却相比,使用凹腔-发散组合冷却可以使结构温度峰值下降16.8%;与没有冷却的纯鼻锥模型相比,鼻锥头部圆弧段表面平均温度降幅可达64%,证实了这种新型冷却结构的可行性和高效性。
疏导式热防护结构通过高温热管将前缘驻点等高热流部位的热量快速疏导至大面积区域,可有效降低防热压力,实现新型飞行器前缘非烧蚀防热。然而,疏导结构内部液体工质回流受到飞行器加速过载的显著影响。通过理论评估与地面试验获得了典型过载条件下尖前缘热疏导结构的抗过载性能。结果表明,维持加热条件不变,当过载环境大于4g后,热疏导性能受到明显影响,但过载减小后疏导性能得以快速恢复。研究结论对于一体化疏导结构的设计具有重要的指导意义。
垂直回收可重复使用运载火箭是运载火箭发展的一个重要方向,大长细比的火箭子级垂直再入过程属于典型的非规则钝头体绕流,与传统低阻力流线体飞行器气动特性差异较大。采用风洞试验辅以数值仿真分析的方法,对基于栅格舵的火箭子级垂直回收构型基本气动特性和非规则钝头体绕流情况进行了研究,获得了发动机外露喷管和栅格舵对火箭子级垂直回收气动特性的影响规律,给出了火箭子级垂直回收布局设计建议。结果表明:火箭子级倒飞状态下肩部区域会在小迎角下产生大分离流动,外露发动机喷管左右两侧诱导出较强的分离涡结构,与火箭尾翼、肩部大分离流动相互作用;垂直回收构型在超声速下阻力会一直处于较高的水平,不同马赫数下压心移动量较大,倒飞时发动机外露喷管会产生较大的干扰静不稳定力矩,其量值与栅格舵提供的静稳定控制力矩基本相当,在火箭子级垂直回收方案设计时需要引起注意。
随着高性能计算机的发展,CFD已成为飞行器设计和流场分析不可缺少的重要手段,风洞试验与飞行数据的天地相关性问题正是其中一项重要的研究内容,X-37B作为继航天飞机之后美国发展的最成功的可跨大气层在轨飞行器,从气动特性角度分析其大气层内飞行走廊的状态对中国类似航天器的研制具有重要的借鉴意义。首先,对计算类X-37B布局飞行器的网格无关性及网格修正开展了研究,在此基础上提出的网格规模影响修正方法对该类飞行器的计算结果修正经过验证是可信的;然后,分别对比分析了雷诺数的影响和试验状态支架干扰的影响,完成了基于数值模拟的高空飞行与风洞试验气动特性差异分析。结果表明,网格规模主要对亚声速来流计算状态压差产生的轴向力影响较大,对法向力系数、俯仰力矩系数和纵向压心影响较小;雷诺数对该类飞行器气动特性特别是轴向力系数、阻力系数和升阻比有较大的影响,但随着马赫数的增加,影响特性开始变的非常复杂;由于风洞试验状态支杆存在,亚跨声速来流条件对该类飞行器的底阻影响很大,需要采取一定的方法和手段对支杆影响进行修正。
研究面对称重复使用运载器尾部发动机的喷流干扰特性对于飞行器设计具有重要意义。在中国航天空气动力技术研究院的FD-12风洞中开展了亚/跨声速飞行条件下的喷流试验。试验使用常温压缩空气作为喷流介质模拟发动机的高温燃气,采用的相似参数包括:飞行器的几何外形尺寸、飞行器的飞行马赫数、发动机喷管的出口马赫数、发动机喷流与自由来流静压比。试验结果表明了发动机喷流对全飞行器气动特性和体襟翼铰链力矩的影响随来流马赫数、喷管、体襟翼偏角等因素的变化规律。
作为新型垂直起降的载人航天器,Starship采用了新型舵面控制方式,其通过前后两组可沿轴线方向偏转的翼面来实现对机体的控制。通过CFD数值模拟手段对该种舵面形式的气动特性进行了系统研究,得到了该种舵面偏转方式对飞行器升阻力和三轴力矩的影响,并分析了其内在机理。在小攻角下,Starship后翼为操纵面,其偏转对控制力系数的影响较为显著,偏转角度与控制力系数基本成线性关系;前翼偏转则对阻力系数的影响较为显著,偏转角度与阻力系数基本线性相关。后翼偏转角与俯仰力矩系数和滚转力矩系数的线性相关性较好,对偏航力矩系数也有耦合影响。前翼的偏转对偏航力矩系数的影响显著,同时与滚转力矩系数和俯仰力矩系数的耦合较小。在大攻角下,尤其是在着陆阶段攻角大于90°的情况下,传统的襟副翼控制方式失效概率高,而新型舵面控制形式前翼和后翼偏转与三轴力矩系数的相关性仍非常强。其对于俯仰通道、滚转通道和偏航通道均能保持良好的操纵特性。
扑翼飞行器的驱动机构是扑翼飞行器的动力装置,决定了扑翼飞行器的整机性能。随着人们对扑翼飞行器性能的要求越来越高,各国研究者们对其驱动机构工作原理的探索也越来越深入,从而使扑翼飞行器驱动机构设计理论与方法研究取得了显著进展。在最近几年里,更是涌现出了许多新型高效的驱动机构。本文对近些年出现的传统纯机械式的驱动机构和基于智能材料的驱动机构的应用现状做了详细的研究与总结,并分析了其特点与发展趋势。介绍了柔性结构在扑翼飞行器领域的应用情况,并分析了其在驱动机构中发挥的作用。
针对垂尾模型低阶模态抖振响应的主动控制问题,设计鲁棒控制器对次级通道进行反馈式阻尼补偿,建立了多模态的RFxLMS控制器,采用宏纤维复合材料压电作动器,开展了垂尾抖振响应压电主动控制的地面模拟试验。试验结果表明,RFxLMS控制器具有收敛速度快、控制效果好的优点,并且相比于单独的FxLMS控制器或鲁棒控制器,对垂尾抖振响应具有更好的控制效果。进一步开展了垂尾抖振响应主动控制的风洞试验。结果表明,RFxLMS控制器在多个试验工况下均有稳定的控制效果,并提升了控制系统的性能,垂尾抖振受控响应的RMS值比无控响应的RMS值降低了39.7%~48.1%。
C/SiC复合材料是航空航天器中的耐高温材料,其服役环境存在低能量冲击源且关于此类冲击事件的研究相对较少。本文主要采用落锤冲击系统性地揭示2D叠层C/SiC复合材料平板的抗低速低能量冲击性能,通过改变冲击能量考核不同单层厚度和平板厚度的抗冲击性能变化,并利用CT技术进行冲击后无损检测,分析结构内部细观损伤。结果表明:冲击载荷下,C/SiC复合材料按冲击载荷变化可分为线性、屈服和回弹3个阶段;典型冲击损伤形式包含局部压溃、分层、纤维断裂及基体微裂纹;同等结构厚度,单层厚度越大C/SiC复合材料平板冲击变形和冲击损伤越小,冲击阻抗值越高;同等单层厚度下,结构总厚度较大的C/SiC复合材料平板冲击损伤较小,冲击阻抗较大。因此,C/SiC复合材料的预制体层数与结构厚度对低能量冲击源较为敏感,且减小单层厚度及增加结构总厚度可明显提高其抗冲击性能。
权威真相源不仅是基于模型的系统工程实施的核心要素,也是"数字工程战略"的关键环节。对权威真相源构建技术进行了研究,包括对权威真相源进行了定义和分析,设计了权威真相源的构建目标和原则,构建了权威真相源的架构和业务流程,并对构建权威真相源的支持技术进行了研究。梳理了民用飞机预研论证的业务流程、专业模型和基础模型,最后通过民用飞机预研论证验证机的案例研究,证实了权威真相源构建技术的可行性。民用飞机预研论证权威真相源能够有效提升系统工程的组织性,提升协同设计效率,同时能够提高模型和系统设计的重用性,减少系统工程实施的复杂度,缩小开发成本。
利用ABAQUS软件对拉伸载荷下的缝合T型接头进行建模与分析,采用基于内聚力模型(CZM)的黏聚接触方法来模拟筋条与蒙皮的脱粘行为,以基于细观力学的非线性弹簧模拟缝线在上下界面的增强作用。在模型基础上对缝线直径进行参数化分析,研究其对T型接头拉伸性能的影响。结果表明:随缝线直径增大,接头极限破坏载荷提高,即拉伸承载能力提高。有限元分析结果与试验值吻合较好。值得注意的是,当缝线直径增大到1 500旦尼尔时,模拟结果与试验数据存在10.4%的误差,这是因为模型未考虑缝合对层合板面内性能的影响,忽略了缝线可能造成的材料损伤。考虑到T型接头在拉伸载荷作用下的破坏模式主要是I型和Ⅱ型破坏,因此宜采用二维有限元模型进行参数化分析,计算效率高并且与试验结果吻合较好。
基于经典层合板理论及双线性黏聚区本构关系,建立了含一般分层裂纹层合板的理论模型,对I-Ⅱ混合型弯曲(MMB)断裂试件进行了裂纹扩展理论分析。提出了一种I-Ⅱ混合型断裂叠加模型,引入I型裂纹分量的刚体转动位移,同时考虑了裂纹长度超过试件半长后中部载荷分量对裂纹扩展的闭合效应,并根据黏聚区力学响应,分段获得了位移函数通解。结合叠加模型的边界条件与连续性条件,分析了MMB试件的裂纹扩展过程,求解获得了载荷-位移曲线。通过与梁模型预测以及试验结果进行对比,验证了本文模型对I-Ⅱ混合型裂纹扩展预测的有效性和准确性,并讨论了初始断裂模式混合比及闭合效应对裂纹扩展过程的影响。结果表明:初始Ⅱ型裂纹比重较大时,中部载荷的闭合效应更为明显,可能出现I型裂纹完全闭合的情况;裂纹扩展过程中,当裂纹长度小于试件半长时,断裂混合比基本保持常数;当裂纹扩展超过试件半长后,闭合效应明显,混合裂纹形式逐渐向单一型断裂模式退化。
确定满足适航要求的最小风险炸弹位置,必须研究爆炸冲击载荷下机身结构动响应及破坏模式。以某型飞机典型机身结构为研究对象,采用LS-DYNA商用软件,建立了爆炸冲击载荷下机身典型结构动响应数值模型。采用控制变量法分析了爆炸物当量、爆炸冲击距离以及爆炸冲击位置对典型机身结构动响应及破坏模式的影响,同时研究了损伤后典型机身结构的剩余强度。研究结果表明,造成机身结构有效破坏的爆炸物临界当量与爆炸冲击距离密切相关;爆炸冲击距离对典型机身结构损伤及剩余强度影响不明显;典型机身结构筋条位置对剩余强度影响较大。在此基础上,提出了表征剩余强度的无量纲系数,并建立了剩余强度无量纲系数与爆炸物当量及爆炸冲击距离之间的函数关系。
人工制备的冰雹可用于多种航空附件冰撞测试。本文以ASTM F320—2010标准为基础,设计制作了多种冰雹,对冰雹的力学性能及影响冰雹力学性能的因素开展了研究。采用低温万能试验机对冰雹进行准静态试验,使用高速摄影技术深入分析冰雹破碎过程及特征,对比分析不同棉纤维种类、棉纤维特性和棉纤维含量下冰雹的力学性能。研究结果表明,含棉冰雹失效过程可分为3个阶段:线性增长阶段、屈服阶段和破碎阶段,失效过程中最大抗压强度出现在线性增长阶段末端。棉纤维的强度和弹性越好,冰雹破碎所需的加载力越大;棉纤维上附着的冰量越少,冰雹破碎所需的加载力越小。棉纤维含量增加可以加强棉纤维的连接作用,使含棉冰雹强度增加;但棉纤维含量到达15%时,继续增加棉纤维含量,冰雹抗压强度不会发生太大变化。亲水棉制成的冰雹抗压强度明显高于疏水棉制成的冰雹。研究结果可为中国民用大飞机适航符合性验证提供参考。
为了实现航天器编队在日地L2点轨道的高精度相对导航,设计了一种分布式的自主导航方法。首先通过信息交互形成局部的测量构型,每颗卫星只基于邻居间的测量进行状态估计,降低了状态维数和计算量;然后根据相互估计的结果进行信息融合,提升估计的精度。在此基础上,对仿真结果进行了定量分析,给出了影响最终估计误差的主要因素测距精度、测量点间的基线与导航精度间的经验公式。在数值仿真中,所提方法达到了厘米量级定位精度和毫米每秒的测速精度。仿真结果表明:该方法有效,且对工程应用具有一定的参考价值。
借助监督式机器学习(ML)方法,对空间翻滚目标的运动状态预测问题进行研究,为空间机器人抓捕空间翻滚目标提供可靠的数据依据。基于物理模型的运动预测方法依赖理想的建模假设,需要连续的视觉反馈信息,解决目标预测问题的能力有限。因此,本文采用机器学习中纯数据驱动方式的稀疏伪输入高斯过程(SPGP)回归方法进行空间翻滚目标的运动预测。给定空间翻滚目标运动状态的历史观测数据,通过连续优化真实观测数据,得到稀疏的伪训练数据集,进而在线快速预测目标的运动状态,预测的计算效率达到毫秒级。此外,利用马尔科夫链蒙特卡洛(MCMC)法处理连续优化过程,克服由于随机初始值造成的优化过程陷入局部极小值问题。利用Snelson数据验证了所提稀疏伪输入高斯过程回归方法的正确性,并通过4组仿真算例验证了所提方法对于空间翻滚目标运动预测的有效性和鲁棒性。
连续下降运行(CDO)是基于航迹运行(TBO)概念的重要组成,对于减少机场终端区燃油消耗和环境影响具有显著效果。简洁、高效和灵活的进场空域,以及高度自动的无冲突节能轨迹规划,是实现高密度终端区连续下降运行的核心要素。设计了一种融合Point Merge理念的新型倒皇冠形进场空域(ICSAA),规范了新型空域内航空器运行程序,建立了以燃油消耗和飞行时间最小为目标的连续下降进近无冲突四维轨迹优化模型,并选用基于精英保留策略的非支配排序遗传算法(NSGA-Ⅱ)进行高效求解。论证了新型柔性空域下连续下降运行轨迹优化具备复杂高密度场景预战术和战术运行性能,对于飞行效率、经济性和空域容量提升具有显著效果,为促进繁忙机场全时段连续下降运行的推广应用提供新视角和新方法。
为提高运载火箭在大气层外当推力出现故障条件下制导算法的最优性、鲁棒性和适应性,提出了一种改进的迭代制导方法。该方法以基于最优控制理论推导的解析形式作为最优控制解,并推导出以5个轨道根数作为终端约束的横截条件,增强了算法的最优性;迭代过程中采用高斯-勒让德方法计算推力积分,并采用球极坐标系下泰勒多项式逼近方法计算引力积分,提高了故障模式下算法的积分精度;该算法采用降维迭代求解模式,并结合对控制变量的合理限幅,保障了推力故障条件下算法的实时性和收敛性。分别基于蒙特卡洛打靶和推力故障条件下进行仿真验证,结果验证了所提方法具有较强的最优性、鲁棒性和故障适应能力。
复杂空战背景下针对人工干扰的博弈是红外空空导弹精确探测制导技术发展面临的瓶颈和核心技术。针对人工干扰对空中红外目标产生的遮蔽、黏连、相似等干扰现象,以及目标机动和相对运动造成的形状、尺度、辐射特性剧烈变化等实际问题,提出一种基于信息特征提取的深度卷积神经网络DNET空中红外图像目标抗干扰识别算法。首先,DNET网络对大尺度特征图像采用密集连接模块,在前部通道保存每一层的网络输出,在网络末端引入特征注意力机制,获得每个特征通道的信息特征识别权重。然后,加入多尺度密集连接模块,并与多尺度特征融合检测结合,提高对大尺度变化情况下的目标特征提取能力。实验结果表明,在伴随红外诱饵干扰的实时检测条件下,红外目标由点目标变化为成像目标,直至充满视场的整个过程中,本文抗干扰识别算法的识别精确度、召回率及识别速度分别达到99.36%、96.95%、132 fps,具备识别精确度和召回率高、识别速度快等优点,并具有良好的鲁棒性。
在基于时频差的三维运动目标无源定位系统中,针对在4个接收站的情况下搜索法实时性低的问题,提出了一种基于改进的加权最小二乘法(MWLS)与萤火虫算法(FA)相结合的无源定位方法(MWLS-FA)。该方法的第1步通过构造一组新的方程来对加权最小二乘(WLS)方法进行改进,使得改进后的WLS方法在4站情况下也能得到目标位置和速度的初始值,第2步利用这个初始值为FA方法提供一个动态的搜索区域,同时在约束条件的添加和参数选择两个方面针对性地对FA方法做出了调整和改进。仿真结果表明,该方法在4站情况下对目标的定位精度可以达到克拉美罗下限(CRLB),而且在实时性和抗噪性方面优于传统的搜索法,同时该方法在5站情况下的抗噪性能优于两步加权最小二乘法(TSWLS)和约束加权最小二乘(CWLS)法。
提出了一种基于欧拉-拉格朗日方法的飞行机械臂系统模型,在机械臂缓慢运动的合理假设下,模型不仅能有效描述实际系统,同时模型表达得到了精简。在此基础上进行控制器设计,首先使用输出变换将系统反馈线性化,并将内外环动态分离,基于此分别设计外环滑模控制器和内环比例-积分-微分(PID)控制器。该控制器在仿真实验中能有效抑制机械臂带来的扰动且镇定和轨迹跟踪性能明显优于经典的串级比例-积分-微分控制器。结果表明本文提出的建模和控制方法能够有效补偿机械臂的已建模扰动,并能充分抑制机械臂摆动产生的未建模扰动,且控制器计算复杂度适中,能够满足实际应用需求。
针对空中作战行动过程(COA)设计问题,根据动态影响网(DINs)理论和改进快速非支配排序遗传(NSGA-Ⅱ)算法,提出一种基于DINs和区间多目标优化的空中作战过程优选方法。首先,分析空中作战过程基本概念,分别进行静态和动态建模,并对参数不确定性进行分析。然后,基于改进Kendall协和系数检验法确定一致性检验后的关键参数,设计DINs概率传播算法。随后,分析期望效果实现概率与各关键参数的相关关系,在分析行动过程优选效果评价指标基础上,采用改进NSGA-Ⅱ算法对模型进行求解。最后,通过多组仿真案例,验证了模型的合理性,以及算法的有效性和优越性。
意图识别在人机交互(HCI)领域受到广泛关注,传统人机交互意图识别方法单纯依靠脑电(EEG)或眼动数据,不能很好地利用2种方法优点。为此,提出了一种融合脑电和眼动数据的人机交互意图识别方法,通过采集脑电和眼动信号,进行特征提取,输入机器学习模式识别网络进行意图识别,并基于Dempster-Shafer (D-S)证据理论进行决策层融合得出最终识别结果。招募了20名有效受试者进行交互意图识别实验,结果表明,基于脑电和眼动信号的人机交互意图识别方法识别准确率高于单纯依靠脑电和眼动数据的方法,可为下一步飞行器和武器系统人机交互系统自适应设计提供理论依据和技术支持。
针对尾座式无人飞行器编队在执行器故障、严重的非线性和耦合性、参数不确定性、外界扰动等影响下的容错控制问题进行了研究。提出了一种鲁棒容错编队控制方法来实现一群尾座式无人飞行器在执行器故障情况下的期望编队飞行。所构建的控制器由2部分组成:标称控制器和干扰补偿控制器。设计标称控制器使系统实现期望的控制性能,利用干扰补偿控制器抑制多种不确定性和执行器故障的影响。通过理论分析证明了系统的鲁棒稳定性,并通过数值仿真验证了算法的有效性。
针对航天器相对导航问题,以空间站表面为"特殊地形",提出一种基于大型航天器表面巡检的相对导航算法。首先,运用巡检飞行器上的TOF (Time of Flight)相机测量空间站表面局部点云数据,以该点云数据为实时图,以空间站表面先验点云数据为基准图。然后,利用3D Zernike矩与三维地形间的一一对应关系,将三维地形匹配转化为基于3D Zernike矩的特征向量匹配。在此基础上求解实时图与匹配上的基准图间的相对位置、相对姿态,从而确定两航天器间的相对导航参数,并通过实验分析了匹配精度及速度的主要影响因素。最后,将该相对导航参数与惯性系统推算的相对导航参数在扩展卡尔曼滤波器的框架下实现信息融合,估计了巡检飞行器与空间站间的相对位置、相对姿态,实验结果表明,相对位置精度优于0.002 m,相对姿态精度优于0.1°。
针对恶劣天气条件下可用空域资源不足导致的航班大面积延误问题,基于复杂网络修复理论和交通流分配理论,借鉴交通网络设计思想提出了一种航路网络修复优化策略。首先,建立了航路网络修复场景,基于气象信息生成了恶劣天气飞行受限区。然后,建立了上层模型以修复成本最低为目标函数、下层模型为多约束交通流分配模型的双层规划修复模型,应用改进粒子群算法对模型整体进行求解,结合K最短路径算法对下层模型进行求解。最后,提出局部和全局两类指标对航路网络修复效果进行评估。基于典型航路网络,以两类基础修复策略为对比方法,同时对比了实际运行结果,研究了不同修复策略的修复效果和适用性。仿真结果表明:航路网络修复优化策略既能弥补原有拓扑结构修复策略的结构受限不足,又能解决拓扑结构调整修复策略带来的巨额协调费用问题,能够保证在对正常运行航班干扰最小的同时,以最小的修复成本使所有受影响的航班都恢复正常运行,对于减缓航路拥堵和航班延误有极大的意义。
战斗机电子战系统提供的态势感知、无源攻击引导、电子对抗和主动隐身等作战能力可以极大提升飞机的生存力和杀伤力。为满足电子战系统越来越高的新质作战能力要求、作战对象快速能力提升、贴近实战的作战样式和作战环境不断变化带来的新要求、适应不同战斗机平台及航电任务系统要求等需求,追求高质量和敏捷开发模式,电子战系统架构必须精心设计。采用系统工程方法,按照能力视图、作战视图、系统视图和技术视图对需求和技术进行了迭代研究,基于灵活数字处理算法支持不同战法、全域综合共用、以快应变和以柔制变等顶层设计思想,从全数字化处理、综合化、可扩展和开放式等多个视角论证了电子战系统架构设计需求,并给出了核心设计要点和方案。战斗机电子战系统架构在大量实践中得到验证,效果良好,能够满足作战使用需求,对下一代战斗机电子系统的研究具有借鉴意义。
以高压压气机出口级叶片叶中截面作为研究对象,获得了实际压气机叶片加工偏差的分布特征,并分析了实际加工偏差对叶型气动性能的影响。以此为基础,研究了加工偏差对叶型性能的影响机理。研究结果表明,实际叶型加工偏差存在一定的系统性偏差,从而导致实际叶型气动性能的平均值偏离设计值。叶型偏差对叶型气动性能的影响存在一定的非线性效应,这在前缘区域更为明显,从而导致了平均叶型的气动性能与实际叶型平均性能出现了明显偏差。前缘附近的几何偏差对吸力面和压力面的速度峰值有较大的影响,因此前缘附近的偏差是使叶型的气动性能产生系统性偏差和增大不确定度的主要因素。根据对流动机理的分析,进口几何角偏差是导致叶型性能出现系统性偏差的主要原因;可以近似用均匀偏差来估计叶身加工偏差对正负攻角范围和损失的影响。
2060铝锂合金具有密度低、比强度高等优势,在航空航天零件制造领域已得到广泛应用。通过冷模热成形工艺可以提高2060铝锂合金成形性,减少开裂、拉毛、回弹等缺陷的发生,后续时效处理可以提高零件整体刚度。然而在实际成形过程中缺乏对温度场的准确预测,即缺乏2060铝锂合金在变压强下界面换热行为的准确描述,无法对成形效果进行评估。本文利用冷模热成形界面换热测试平台,对不同压强下2060铝锂合金与H13热作模具钢的换热行为进行测试研究,基于考虑模具钢变热物性参数的显式有限差分法反算模具表面温度,计算得到不同压强下的界面换热系数,并与Beck反传热算法进行对比,两者计算结果相近。实验结果显示2060铝锂合金IHTC随压强增大而增大,在20 MPa下IHTC=1.906 6 kW/(m2·K)。改进的有限差分法具有计算效率高、速度快、反映实际模具内部温度场、误差较低等优点,可拓展应用于其他薄板材料在冷模热成形条件下的界面换热系数求解。
增材制造技术能够制造复杂点阵结构。相比于传统的加工工艺,可以一次成型,克服了低速冲击下传统工艺芯层与面层在连接点处易发生脱粘的问题。利用低速落锤试验装置对增材制造面心立方(FCC)夹芯板和体心立方(BCC)夹芯板进行了低速冲击试验,获得了两种微桁架点阵夹芯板的破坏模式和冲击响应曲线。低速冲击下,微桁架夹芯板上面层在冲击部位产生局部凹坑,并出现裂纹,其余部位没有大变形。试验结果表明在相同能量冲击下,BCC夹芯板的凹坑深度要小于FCC夹芯板,BCC夹芯板的抗冲击性能要优于FCC夹芯板;建立有限元模型,较好地表征了低速冲击过程中微桁架结构的损伤。发现在低速冲击过程中,对于两种微桁架点阵夹芯板,冲击能量主要由上面层和芯层吸收;冲击能量改变,夹芯板各部分吸能百分比变化较小。BCC夹芯板和FCC夹芯板结构稳定,整体性好;低速冲击下,FCC夹芯板最先发生破坏的部位是上面层与芯层连接处;而BCC夹芯板最先发生破坏的部位是中间竖直桁架。
为了探究铺放工艺参数的变化对复合材料厚度方向力学行为的影响,通过面外拉伸实验分析了铺放压力与铺放温度对复合材料厚度方向面外拉伸强度与拉伸模量的影响,并对不同铺放工艺的试件失效模式进行了分析。试验结果表明,增大铺放压力会减小层间富树脂区厚度,使复合材料面外拉伸强度不断增大,当铺放压力为0.225 MPa时取得实验组最大值,与铺放压力0.075 MPa相较强度提升约13.1%,失效模式由纤维断裂与纤维层剥离的组合转变为纤维断裂;铺放压力的进一步增大会挤压层间树脂,改变树脂富集形态,使面外拉伸强度下降,剥离失效模式再度出现。实验用复合材料的适宜铺放温度为30℃,过高的铺放温度会导致孔隙率的上升,使复合材料的面外拉伸强度严重下降,裂纹扩展失去规律性;与铺放温度25℃相比,铺放温度为45℃时复合材料面外拉伸强度下降达19.2%,失效模式由纤维断裂与纤维层剥离的组合失效转化为单一的纤维层剥离失效。
仿形涡流检测技术因其耦合性好可有效抑制检测过程晃动而特别适合对大曲率叶片前缘快速检测。针对涡轮叶片前缘仿形涡流检测建立前缘及仿形线圈有限元模型,运用有限元方法分析叶片前缘凹坑、长裂纹、边沿凹坑3种典型缺陷在内外两种激励、不同内径线圈、不同频率等模式下的检测信号特征。仿真结果表明:大曲率前缘实施仿形涡流检测,检测区域可有效覆盖整个前缘区域,检测频率越高,检测灵敏度越高。双线圈检测模式下,外激励内接收比内激励外接收灵敏高,当内检测线圈尺寸大于缺陷的尺度时,内接收线圈内径越小,其相对灵敏度越高。结合仿真结论,制作前缘缺陷试块,采用锁相放大及图形化编程技术,设计前缘仿形涡流检测系统,试验结果表明,仿形线圈可有效检出前缘典型缺陷,检测幅值相位输出结果与仿真结论相似。研究成果可用于指导大曲率叶片前缘的工程实践检测。
针对复合材料构件热压罐成型过程中常见的分层缺陷,考察了整体成型工艺温度对分层扩展、QY8911双马树脂基体韧性及T300/QY8911层合板Ⅰ型层间断裂韧性的影响,并通过分层扩展断面形貌深入分析了复合材料整体成型工艺中分层扩展的路径和断面破坏模式,给出了复合材料整体成型工艺和结构设计的优化建议措施。结果表明,随着整体成型最高温度的升高,分层扩展程度增大,QY8911双马树脂基体的拉伸强度和拉伸模量逐渐降低,T300/QY8911层合板Ⅰ型层间断裂韧性逐渐增大;对分层扩展断面进行SEM扫描电镜分析发现分层扩展沿着层间开裂,断面内存在基体断裂和基体/纤维界面脱粘两种破坏模式,Ⅰ型层间断裂是复合材料整体成型工艺中分层扩展的典型微观特征。